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Abstract: In this paper, we firstly obtain the existence of the monotone positive solutions and establish a corre-
sponding iterative scheme for the following mixed-order four-point boundary value problem with p-Laplacian

(ϕp(D
α
0+u(t)))

′ + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1,

u′(0)− βu(ξ) = 0, u′′(0) = 0, u′(1) + γu(η) = 0.

Unlike many other fractional boundary value problem with p-Laplacian, the nonlinear term involves the first-order
derivative explicitly, so it is hard to get positive solutions for the problem. The main tool used here is the monotone
iterative technique. By the fixed point theorem due to Avery and Peterson, we obtained some sufficient conditions
that guarantee the existence of at least three positive solutions to the above boundary value problem. Meanwhile,
we give an example to demonstrate the use of the main results of this paper.
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1 Introduction

The equation with p-Laplacian arises from the model-
ing of different physical and natural phenomena, non-
linear elasticity and glaciology, non-Newtonian me-
chanics, population biology, combustion theory, non-
linear flow laws and so on, so the existence of positive
solutions for integer-order nonlinear boundary value
problems with p-Laplacian received wide attention
(see, for instance, [1-5] and the references therein).
Boundary value problems for nonlinear fractional dif-
ferential equations arise in the study of models of vis-
coelasticity, porous media, control, electrochemistry,
electromagnetic, etc [6-8]. Therefore, fractional dif-
ferential equations have become a very important and
useful area of mathematics over the last few decades.
For details, see [19-40] and the references therein.
Among them, the existence of positive solutions for
boundary value problem of a nonlinear fractional dif-
ferential equation with p-Laplacian has gained much
importance and attention. For details, see [9-12] and
the references therein.

G. Chai [12] investigated the existence and mul-
tiplicity of positive solutions for the boundary val-
ue problem of fractional differential equation with p-

Laplacian operator

Dβ
0+(ϕp(D

α
0+u))(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ
0+u(1) = 0, Dα

0+u(0) = 0,

whereDβ
0+, D

α
0+ andDγ

0+ are the standard Riemann-
Liouville fractional derivative with 1 < α ≤ 2, 0 <
β ≤ 1, 0 < γ ≤ 1, 0 ≤ α − γ − 1, σ is a positive
number.

Z. Liu and L. Lu [10] studied the boundary value
problem for nonlinear fractional differential equations
with p-Laplacian operator

Dβ
0+(ϕp(D

α
0+u))(t) = f(t, u(t), Dα

0+u(t)), 0 < t < 1,

u(0) = µ

∫ 1

0
u(s)ds+λu(ξ), Dα

0+u(0) = kDα
0+u(η),

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, µ, λ, k ∈
R, ξ, η ∈ [0, 1], Dα

0+ denotes the Caputo fractional
derivative of order α.

F. Torres [35] considered the existence of s-
ingle and multiple positive solutions to nonlinear
mixed-order three-point boundary value problem for
p-Laplacian

(ϕp(D
α
0+u(t)))

′ + a(t)f(t, u(t)) = 0, 0 < t < 1,
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Dα
0+u(0) = u(0) = u′′(0) = 0, u′(1) = γu′(η),

where η, γ ∈ (0, 1), α ∈ (2, 3], Dα
0+ is the Caputo’s

derivative.
However, to the best knowledge of the authors,

there is less literature available on paper concerned
with the mixed-order (both Caputo’s fractional-order
derivative and integer-order derivative are included
in the equation) boundary value problem with p-
Laplacian. On the other hand, the monotone iterative
technique has been successfully applied to integer or-
der boundary value problem, see for example [13-17]
and the references therein, but the research on the ex-
istence and iteration of monotone positive solutions
for fractional order boundary value problem is pro-
ceeding very slowly.

Inspired by the above works, in section 3, we con-
sider the existence and monotone positive solution-
s for the following mixed-order four-point boundary
value problem with p-Laplacian

(ϕp(D
α
0+u(t)))

′+a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1,
(1)

u′(0)− βu(ξ) = 0, u′′(0) = 0, u′(1) + γu(η) = 0,
(2)

where ϕp(s) = |s|p−2s, p > 1, ϕq = (ϕp)
−1, 1p +

1
q =

1, 2 < α ≤ 3, 0 ≤ ξ ≤ η ≤ 1, 0 ≤ β, γ ≤ 1, Dα
0+

is the Caputo’s fractional derivative. By the applica-
tion of the monotone iterative technique, we can get
the solutions by constructing a corresponding iterative
scheme. Furthermore, the nonlinear term involves the
first-order derivative explicitly.

In [18], the authors considered the existence of
triple positive pseudo-symmetric solutions of the form

(ϕp(u
′))′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0)−βu′(ξ) = 0, u(ξ)−δu′(η) = u(1)+δu′(1+ξ−η),

by means of a fixed point theorem due to Avery and
Peterson. This fixed point theorem is used as a classi-
cal method for getting triple positive solutions for the
differential equations of integer order which the low-
er order derivatives of unknown function is involved
in the nonlinear term explicitly, but it cannot be used
directly to obtain the existence of triple positive so-
lutions of the differential equations of fractional or-
der. The main difficulty is that we cannot get the con-
cavity or convexity of function u(t) by the sign of its
fractional order derivative. In section 4, by obtaining
some new inequalities of the unknown function, we
get the existence of at least three positive solutions for
the boundary value problem of fractional order.

2 Preliminaries and Lemmas

For the sake of convenience, we formulate the follow-
ing conditions.

(H1) : f(t, x, y) ∈ C([0, 1] × R+ × R → R+),
a(t) is a nonnegative continuous function defined on
(0, 1) and a(t) ̸≡ 0 on any subinterval of (0, 1).More-
over,

∫ 1
0 a(t)dt < +∞;

(H2) : Λ < (α − 1)(1 − βξ), where Λ = γ(1 −
βξ) + β(1 + ηγ).

In this paper, a positive solution u(t) of boundary
value problem (1), (2) means a solution u(t) of (1) and
(2) satisfying u(t) > 0, 0 < t < 1.

Definition 1 [38] The Riemann-Liouville fractional
integral of order α > 0 of a function f : (0,+∞) →
R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

provided that the right-hand side is pointwise defined
on (0,+∞).

Definition 2 [38] The Caputo’s derivative of order
α > 0 of a function f : (0,+∞) → R is defined
by

Dα
0+f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)ds

(t− s)α+1−n
,

where n = [α] + 1 and [α] denotes the integer part of
α.

Lemma 3 Let α > 0 and u ∈ C(0, 1) ∩ L1(0, 1).
Then the fractional differential equation

Dα
0+u(t) = 0

has

u(t) = c1 + c2t+ c3t
2 + · · ·+ cnt

n−1,

where ci ∈ R, i = 1, 2, · · · , n and n = [α] + 1 as
unique solution.

Lemma 4 [38] Let α > 0, then

Iα0+D
α
0+u(t) = u(t)+ c1 + c2t+ c3t

2 + · · ·+ cnt
n−1

for some ci ∈ R, i = 1, 2, · · · , n, and n = [α] + 1.

Lemma 5 For any h ∈ C[0, 1], 2 < α ≤ 3, the u-
nique solution of

(ϕp(D
α
0+u(t)))

′ + h(t) = 0, 0 < t < 1, (3)
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u′(0)− βu(ξ) = 0, u′′(0) = 0, u′(1) + γu(η) = 0,
(4)

is given by

u(t) =

∫ 1

0
G(t, s)ϕq

(∫ s

0
h(τ)dτ

)
ds, (5)

where

G(t, s) =

− (t−s)α−1

Γ(α) + β(1+γη−γt)(ξ−s)α−1

ΛΓ(α)

+ (1−βξ+βt)(1−s)α−2

ΛΓ(α−1)

+γ(1−βξ+βt)(η−s)α−1

ΛΓ(α) , s ≤ ξ, s ≤ t,
β(1+γη−γt)(ξ−s)α−1

ΛΓ(α)

+ (1−βξ+βt)(1−s)α−2

ΛΓ(α−1)

+γ(1−βξ+βt)(η−s)α−1

ΛΓ(α) , s ≤ ξ, t ≤ s,

− (t−s)α−1

Γ(α) + (1−βξ+βt)(1−s)α−2

ΛΓ(α−1)

+γ(1−βξ+βt)(η−s)α−1

ΛΓ(α) ,

ξ ≤ s ≤ η, s ≤ t,

(1−βξ+βt)(1−s)α−2

ΛΓ(α−1)

+γ(1−βξ+βt)(η−s)α−1

ΛΓ(α) ,

ξ ≤ s ≤ η, t ≤ s,

− (t−s)α−1

Γ(α) + (1−βξ+βt)(1−s)α−2

ΛΓ(α−1) ,

η ≤ s, s ≤ t,

(1−βξ+βt)(1−s)α−2

ΛΓ(α−1) , η ≤ s, t ≤ s.

(6)

Proof: Integrating both sides of the equation (3), we
can get

ϕp(D
α
0+u(t)) = −

∫ t

0
h(s)ds,

that is

Dα
0+u(t) = −ϕq

(∫ t

0
h(s)ds

)
.

Taking Lemma 4 into account,

u(t) = − 1
Γ(α)

∫ t
0 (t− s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

+A+Bt+ Ct2,

the condition u′′(0) = 0 implies that C = 0. So

u′(t) = − 1
Γ(α−1)

∫ t
0 (t− s)α−2ds

ϕq

(∫ s
0 h(τ)dτ

)
+B,

in view of condition (4), we have

B + β
Γ(α)

∫ ξ
0 (ξ − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

−Aβ −Bβξ = 0,
(7)

− 1
Γ(α−1)

∫ 1
0 (1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

+B − γ
Γ(α)

∫ η
0 (η − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

+Aγ +Bηγ = 0.
(8)

Solving (7), (8), we get

u(t) = − 1
Γ(α)

∫ t
0 (t− s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

+1−βξ+βt
ΛΓ(α−1)

∫ 1
0 (1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

+ (1−βξ)γ+βγt
ΛΓ(α)

∫ η
0 (η − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

+β(1+ηγ)−βγt
ΛΓ(α)

∫ ξ
0 (ξ − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds.

This completes the proof.
Denote

N =
β(1 + γη) + (α− 1)(1− βξ + β) + γ(1− βξ + β)

ΛΓ(α)
,

G =
(α− 1)(1− βξ + 1

4β)− Λ

β(1 + γη) + (α− 1)(1− βξ + β) + γ(1− βξ + β)
.

Lemma 6 The function G(t, s) defined by (6) has the
following properties.

1. G ∈ C([0, 1] × [0, 1]), 0 ≤ G(t, s) ≤ N(1 −
s)α−2, ∂G(t,s)

∂t ≤ (β+βγ)(1−s)α−2

ΛΓ(α−1) , t, s ∈ (0, 1);

2. There exists a number G > 0 such that

min
1
4
≤t≤ 3

4

G(t, s) ≥ GN(1− s)α−2, 0 < s < 1. (9)

Definition 7 [18] The map β is said to be a nonneg-
ative continuous convex functional on a cone K of a
real Banach space E provided that β : K → [0,∞)
is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ K and 0 ≤ t ≤ 1.

Definition 8 [18] The map α is said to be a nonneg-
ative continuous concave functional on a cone K of a
real Banach space E provided that α : K → [0,∞)
is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ K and 0 ≤ t ≤ 1.
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Let γ, θ be nonnegative continuous convex func-
tionals on K, α be a nonnegative continuous concave
functional on K, and ψ be a nonnegative continuous
functional on K. For positive real numbers a, b, c, and
d, we define the following convex sets:

K(γ, d) = {x ∈ K | γ(x) < d},
K(γ, α, b, d) = {x ∈ K | b ≤ α(x), γ(x) ≤ d},
K(γ, θ, α, b, c, d) = {x ∈ K | b ≤ α(x),

θ(x) ≤ c, γ(x) ≤ d},
R(γ, ψ, a, d) = {x ∈ K | a ≤ ψ(x), γ(x) ≤ d}.

The following fixed point theorem due to Avery
and Peterson is fundamental in the proofs of our main
results in section 4.

Lemma 9 [18] Let K be a cone in a Banach space
E. Let γ and θ be nonnegative continuous convex
functionals onK, α be a nonnegative continuous con-
cave functional on K, and ψ be a nonnegative contin-
uous functional on K satisfying

ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1,

such that for some positive numbers M and d,

α(x) ≤ ψ(x), ∥x∥ ≤Mγ(x) for x ∈ K(γ, d),
(10)

where K(γ, d) is the closure of the set K(γ, d). Sup-
pose

T : K(γ, d) → K(γ, d)

is completely continuous and there exist positive num-
bers a, b, and c with a < b such that

(S1) x ∈ K(γ, θ, α, b, c, d) |α(x) > b} ̸= ∅
and α(Tx) > b for x ∈ K(γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ K(γ, α, b, d) with
θ(Tx) > c;

(S3) 0 ̸∈ R(γ, ψ, a, d) and ψ(Tx) < a for
x ∈ R(γ, ψ, a, d) with ψ(x) = a.
Then T has at least three fixed points x1, x2, x3 ∈
K(γ, d), such that

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1);

a < ψ(x2), α(x2) < b, ψ(x3) < a.

3 Existence and iteration of positive
solutions for the problem (1) and
(2)

Consider the Banach space E = C1[0, 1] equipped
with the norm

∥u∥ = max

{
max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|
}
.

Define the cone P ⊂ E by

P = {u ∈ E | u(t) ≥ 0, 0 ≤ t ≤ 1}. (11)

For u ∈ P, we define the operator T by

(Tu)(t) =

∫ 1

0
G(t, s)ds

ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
,(12)

where G(t, s) is given by (6).
Obviously, u(t) is a solution of boundary value

problem (1), (2) if and only if u(t) satisfies the equa-
tion u = Tu.

Lemma 10 The operator T : P → P is completely
continuous.

The statement of the main result needs to introduce
the notations.

M = max

{Nϕq(∫ 1

0
a(s)ds

)
α− 1

,

(β + βγ)ϕq

(∫ 1

0
a(s)ds

)
(α− 1)ΛΓ(α− 1)

}
.

Theorem 11 Suppose that (H1), (H2) hold. Fur-
thermore, there exists a number m > 0 such that

(A1) f(t, x1, y1) ≤ f(t, x2, y2), for 0 ≤ t ≤
1, 0 ≤ x1 ≤ x2 ≤ m, 0 ≤ |y1| ≤ |y2| ≤ m;

(A2) max
0≤t≤1

f(t,m,m) ≤ ϕp(
m
M );

(A3) f(t, 0, 0) ̸≡ 0 on 0 ≤ t ≤ 1.
Then the fractional boundary value problem (1), (2)
has at least one positive solution ω∗ ∈ P with
0 < ω∗ ≤ m, 0 < |(ω∗)′| ≤ m and lim

n→∞
ωn =

lim
n→∞

Tnω0 = ω∗, where

ω0(t) =
m

M
ϕq

(∫ 1

0
a(s)ds

)∫ 1

0
G(t, s)ds, 0 ≤ t ≤ 1.

Proof: Set Pm = {u ∈ P : ∥u∥ ≤ m}. Next, we
first prove TPm ⊂ Pm.

Let u ∈ Pm, then

0 ≤ u(t) ≤ max
0≤t≤1

|u(t)| ≤ ∥u∥ ≤ m,

|u′(t)| ≤ max
0≤t≤1

|u′(t)| ≤ ∥u∥ ≤ m,

taking (A1) and (A2) into account,

0 ≤ f(t, u(t), u′(t)) ≤ f(t,m,m)
≤ max

0≤t≤1
f(t,m,m) ≤ ϕp(

m
M ), 0 ≤ t ≤ 1,
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(12) implies that (Tu)(t) ≥ 0. Moreover,

|(Tu)(t)| ≤
∫ 1
0 max

0≤t≤1
G(t, s)

ϕq

(∫ s
0 a(τ)f(τ, u(τ), u

′(τ))dτ

)
ds

≤ N m
M ϕq

(∫ 1
0 a(s)ds

)∫ 1
0 (1− s)α−2ds

= Nm
M(α−1)ϕq

(∫ 1
0 a(s)ds

)
≤ m,

and

|(Tu)′(t)| ≤
∫ 1
0 max

0≤t≤1

∂G(t,s)
∂t

ϕq

(∫ s
0 a(τ)f(τ, u(τ), u

′(τ))dτ

)
ds

≤ m
M ϕq

(∫ 1
0 a(s)ds

)
β+βγ

ΛΓ(α−1)∫ 1
0 (1− s)α−2ds

≤ m
M(α−1)

β+βγ
ΛΓ(α−1)ϕq

(∫ 1
0 a(s)ds

)
≤ m.

Thus, we have ∥Tu∥ ≤ m, which implies TPm ⊂
Pm.

Let

ω0(t) =
m

M
ϕq

(∫ 1

0
a(s)ds

)∫ 1

0
G(t, s)ds,

then

max
0≤t≤1

ω0(t) = m
M ϕq

(∫ 1
0 a(s)ds

)∫ 1
0 max

0≤t≤1
G(t, s)ds

≤ m
M ϕq

(∫ 1
0 a(s)ds

)
N
∫ 1
0 (1− s)α−2ds

= Nm
M(α−1)ϕq

(∫ 1
0 a(s)ds

)
≤ m,

and

max
0≤t≤1

|ω′
0(t)| ≤ m

M ϕq

(∫ 1
0 a(s)ds

)∫ 1
0 max

0≤t≤1

∂G(t,s)
∂t ds

≤ m
M ϕq

(∫ 1
0 a(s)ds

)
β+βγ

ΛΓ(α−1)∫ 1
0 (1− s)α−2ds

= m
M(α−1)

β+βγ
ΛΓ(α−1)ϕq

(∫ 1
0 a(s)ds

)
≤ mM

M = m.

So we have ω0(t) ∈ Pm. Let ω1 = Tω0, then ω1 ∈
Pm. Denote

ωn+1 = Tωn = Tn+1ω0, (n = 0, 1, 2, · · ·),

since TPm ⊂ Pm,we have ωn ∈ Pm, (n = 0, 1, 2, ··
·), {ωn}∞n=1 is a sequentially compact set since T is a
completely continuous operator.

ω1(t) = Tω0(t)

=
∫ 1
0 G(t, s)ϕq

(∫ s
0 a(τ)f(τ, ω0(τ), ω

′
0(τ))dτ

)
ds

≤ m
M ϕq

(∫ 1
0 a(s)ds

)∫ 1
0 G(t, s)ds

= ω0(t), 0 ≤ t ≤ 1,

and

|ω′
1(t)| = |(Tω0)

′(t)|

=
∫ 1
0 |∂G(t,s)

∂t |ϕq
(∫ s

0 a(τ)f(τ, ω0(τ), ω
′
0(τ))dτ

)
ds

≤ m
M ϕq

(∫ 1
0 a(s)ds

)∫ 1
0

∣∣∣∣∂G(t,s)
∂t

∣∣∣∣ds
= |ω′

0(t)|, 0 ≤ t ≤ 1,

which implies

ω1(t) ≤ ω0(t), |ω′
1(t)| ≤ |ω′

0(t)|, 0 ≤ t ≤ 1,

so
ω2(t) = Tω1(t) ≤ Tω0(t) = ω1(t),

|ω′
2(t)| = |(Tω1)

′(t)| ≤ |(Tω0)
′(t)| = |ω′

1(t)|.

Thus we have

ωn+1 ≤ ωn, |ω′
n+1(t)| ≤ |ω′

n(t),

0 ≤ t ≤ 1, n = 0, 1, 2, · · ·.

So we get T has a fixed point ω∗ ∈ Pm, and ω∗ =
lim
n→∞

ωn,moreover, ∥ω∗∥ > 0, since the zero function
is not a solution of boundary value problem (1), (2).
According to the properties of the G(t, s), we have
ω∗(t) ≥ G∥ω∗∥ > 0, 1

4 ≤ t ≤ 3
4 , that is ω∗ is a

positive solution of (1) and (2). ⊓⊔
Remark If the equation (1) is the integer order p-
Laplacian equation, we consider the following bound-
ary value problem

(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0,

where ϕp(s) = s|s|p−2, p > 1, (ϕp)−1 = ϕq,
1
p +

1
q = 1, ξ, η ∈ (0, 1) and ξ < η, α ∈ (0, 1ξ ),β ∈
(0, 1

1−η ).
Let

A = max

{
ϕq(
∫ 1
0 q(τ)dτ)(1 +

1
α),

ϕq(
∫ 1
0 q(τ)dτ)(1 +

1
β )

}
.
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(H1) f ∈ C([0, 1]×[0,∞)×(−∞,∞), (0,∞));

(H2) q(t) is a nonnegative measurable function
defined on (0, 1), q(t) ̸≡ 0 on any subinterval of
(0, 1). In addition,

∫ 1
0 q(t)dt < +∞;

(H3) ξ, η ∈ (0, 1) and ξ < η, α ∈ (0, 1ξ ), β ∈
(0, 1

1−η ). We have the following Theorem.

Theorem: [40] Assume that (H1), (H2) and (H3)
hold, and there exists a > 0, such that

(C1) f(t, x1, y1) ≤ f(t, x2, y2), for any 0 ≤
t ≤ 1,
0 ≤ x1 ≤ x2 ≤ a, 0 ≤ |y1| ≤ |y2| ≤ a;

(C2) max
0≤t≤1

f(t, a, a) ≤ ϕp
(
a
A

)
;

(C3) f(t, 0, 0) ̸≡ 0 for 0 ≤ t ≤ 1.

Then the above boundary value problem has one
positive solution ω∗ ∈ K such that 0 < ω∗ ≤ a, 0 <
|(ω∗)′| ≤ a and lim

n→∞
Tnω0 = ω∗, lim

n→∞
(Tnω0)

′ =

(ω∗)′ where

ω0(t) = a
max

{
( 1
α + t), ( 1β + (1− t))

}
max

{
( 1
α + 1), ( 1β + 1)

} , 0 ≤ t ≤ 1.

Corollary: [40] Assume (H1)− (H3), (C1), (C3)
hold, and there exist 0 < a1 < a2 < · · · < an, such
that

(C ′
2) max

0≤t≤1
f(t, ak, ak) ≤ ϕp(

ak
A ), k =

1, 2, · · · , n, particularly, lim inf
r→+∞

max
0≤t≤1

f(t, r, ak) = 0,

k = 1, 2, · · · , n).

Then the above boundary value problem has
n positive solutions ω∗

k ∈ K such that 0 <
ω∗
k ≤ ak, 0 < |(ω∗

k)
′| ≤ ak and lim

n→∞
Tnωk0 =

ω∗
k, lim

n→∞
(Tnωk0)

′ = (ω∗
k)

′ where

ωk0(t) = ak
max

{
( 1
α + t), ( 1β + (1− t))

}
max

{
( 1
α + 1), ( 1β + 1)

} , 0 ≤ t ≤ 1.

4 Three positive solutions of the
problem (1) and (2)

Lemma 12 Given h(t) ∈ C[0, 1], 2 < α ≤ 3. As-
sume that u(t) is a solution of problem (3), (4),then

u′(t) = − 1
Γ(α−1)

∫ t
0 (t− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

+ β
ΛΓ(α−1)

∫ 1
0 (1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

+ βγ
ΛΓ(α)

∫ η
0 (η − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

− βγ
ΛΓ(α)

∫ ξ
0 (ξ − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds.

(13)

Proof: From Lemma 5, we get

u(t) = − 1
Γ(α)

∫ t
0 (t− s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

+1−βξ+βt
ΛΓ(α−1)

∫ 1
0 (1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

+ (1−βξ)γ+βγt
ΛΓ(α)

∫ η
0 (η − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

+β(1+ηγ)−βγt
ΛΓ(α)

∫ ξ
0 (ξ − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds.

Then equation (13) is established.

Lemma 13 Assume that h(t) > 0 and u(t) is a solu-
tion of problem (3), (4). Then there exists a positive
constant G1 such that

max
0≤t≤1

|u(t)| ≤ G1 max
0≤t≤1

|u′(t)|, (14)

where G1 =
NΛΓ(α−1)

β > 0.

Proof: From Lemmas 5 and 6, we obtain

max
0≤t≤1

|u(t)| = max
0≤t≤1

∣∣∣∣∫ 1
0 G(t, s)ϕq

(∫ s
0 h(τ)dτ

)
ds

∣∣∣∣
≤
∫ 1
0 N(1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds,

(15)
max
0≤t≤1

|u′(t)| ≥ |u′(0)|

= β
ΛΓ(α−1)

∫ 1
0 (1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

+ βγ
ΛΓ(α)

∫ η
0 (η − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

− βγ
ΛΓ(α)

∫ ξ
0 (ξ − s)α−1ϕq

(∫ s
0 h(τ)dτ

)
ds

> β
ΛΓ(α−1)

∫ 1
0 (1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds.

(16)
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Thus,

max
0≤t≤1

|u(t)| = max
0≤t≤1

∣∣∣∣∫ 1
0 G(t, s)ϕq

(∫ s
0 h(τ)dτ

)
ds

∣∣∣∣
≤
∫ 1
0 N(1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds,

≤
∫ 1
0 G1

β
ΛΓ(α−1)(1− s)α−2ϕq

(∫ s
0 h(τ)dτ

)
ds

≤ G1 max
0≤t≤1

|u′(t)|.
(17)

Let the space E = C1[0, 1] endowed with the norm,

∥u∥ = max

{
max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|
}
. (18)

It is well known that E is a Banach space. Define the
cone K by

K = {u ∈ E| u(t) ≥ 0, min
1
4
≤t≤ 3

4

u(t) ≥ G max
0≤t≤1

u(t),

max
0≤t≤1

|u(t)| ≤ G1 max
0≤t≤1

|u′(t)|}.

Let the nonnegative continuous concave functional α,
the nonnegative continuous convex functional θ, γ
and the nonnegative continuous functional ψ be de-
fined on the cone K by

γ(u) = max
0≤t≤1

|u′(t)|, ψ(u) = θ(u) = max
0≤t≤1

|u(t)|,

α(u) = min
1
4
≤t≤ 3

4

|u(t)|, for u ∈ K.

With lemmas 6 and 13, for all u ∈ K, the functionals
defined above satisfy that

Gθ(u) ≤ α(u) ≤ θ(u) = ψ(u), ∥u∥ ≤ G2γ(u),

where G2 = max{G1, 1}. Therefore, the condition
(10) of Lemma 9 is satisfied.

Define an operator T : K → E by

(Tu)(t) =

∫ 1

0
G(t, s)ds

ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
.(19)

From Lemma 10, we have T : K → K is completely
continuous. ⊓⊔

Theorem 14 Assume that (H1), (H2) hold. Let 0 <
a < b ≤ Gd, with

b[αΛ + βγ(ξα + ηα) + αβ]ϕq(
∫ 1
0 a(s)ds)

< ΛΓ(α+ 1)dGN
∫ 3

4
1
4

(1− s)α−2ϕq(
∫ s

1
4
a(τ)dτ)ds,

and suppose that f satisfies the following conditions:
(A1) f(t, h, k) ≤

ϕp

(
ΛΓ(α+1)d

[αΛ+βγ(ξα+ηα)+αβ]ϕq(
∫ 1
0 a(s)ds)

)
, for

(t, h, k) ∈ [0, 1]× [0, G2d]× [−d, d];
(A2) f(t, h, k) >

ϕp

 b

GN
∫ 3

4
1
4

(1−s)α−2ϕq(
∫ s
1
4
a(τ)dτ)ds

 , for

(t, h, k) ∈ [14 ,
3
4 ]× [b, b

G ]× [−d, d];

(A3) f(t, h, k) < ϕp

(
a(α−1)

Nϕq(
∫ 1
0 a(s)ds)

)
, for

(t, h, k) ∈ [0, 1]× [0, a]× [−d, d].
Then the boundary value problem (1),(2) has at

least three positive solutions u1, u2, u3 such that
max
0≤t≤1

|u′i(t)| ≤ d, i = 1, 2, 3; b < min
1
4
≤t≤ 3

4

|u1(t)|;

a < max
0≤t≤1

|u2(t)|, min
1
4
≤t≤ 3

4

|u2(t)| < b, max
0≤t≤1

|u3(t)| <

a.

Proof: Boundary value problem (1),(2) has a solution
u = u(t) if and only if u solves the operator equation
u = Tu. Thus we set out to prove that T satisfies the
Avery-Peterson fixed point theorem which will prove
the existence of three fixed points of T which satisfy
the conclusion of the theorem.

For u ∈ K(γ, d), there is γ(u) = max
0≤t≤1

|u′(t)| ≤

d. With lemma 13, there is max
0≤t≤1

|u(t)| ≤ G1d ≤

G2d, then condition (A1) implies

f(t, u(t), u′(t))

≤ ϕp

(
ΛΓ(α+1)d

[αΛ+βγ(ξα+ηα)+αβ]ϕq(
∫ 1
0 a(s)ds)

)
.

Then

γ(Tu) = max
0≤t≤1

|(Tu)′(t)|

= max
0≤t≤1

∣∣∣∣− 1

Γ(α− 1)

∫ t

0
(t− s)α−2

ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

+
β

ΛΓ(α− 1)

∫ 1

0
(1− s)α−2

ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

+
βγ

ΛΓ(α)

∫ η

0
(η − s)α−1

ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

− βγ

ΛΓ(α)

∫ ξ

0
(ξ − s)α−1
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ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

∣∣∣∣
≤
[

1

(α− 1)Γ(α− 1)
+
βγ(ξα + ηα) + αβ

ΛΓ(α+ 1)

]
ΛΓ(α+ 1)d

[αΛ + βγ(ξα + ηα) + αβ]ϕq(
∫ 1
0 a(s)ds)

ϕq(

∫ 1

0
a(s)ds)

= d.

Therefore, T : K(γ, d) → K(γ, d).
We choose u(t) = b

G . It is easy to see that u(t) ∈
K(γ, θ, α, b, b

G , d) and α(u) = α( b
G) = b

G > b,

and so {u ∈ K(γ, θ, α, b, b
G , d)|α(u) > b} ̸= ∅.

So for u ∈ K(γ, θ, α, b, b
G , d), we have b ≤ u(t) ≤

b
G , |u′(t)| ≤ d for 1

4 ≤ t ≤ 3
4 .

From (A2), we get

f(t, u(t), u′(t))

> ϕp

 b

GN
∫ 3

4
1
4

(1−s)α−2ϕq(
∫ s
1
4
a(τ)dτ)ds


for 1

4 ≤ t ≤ 3
4 , thus

α(Tu) = min
1
4≤t≤ 3

4

|(Tu)(t)|

= min
1
4≤t≤ 3

4

∣∣∣∣∫ 1

0
G(t, s)ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

∣∣∣∣
>
∫ 1

0
GN(1− s)α−2ϕq

(∫ s

0
a(τ)f(τ, u(τ), u′(τ))dτ

> GN
∫ 3

4
1
4

(1−s)α−2ϕq

(∫ s
1
4
a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

∣∣∣∣
> b

GN
∫ 3

4
1
4

(1−s)α−2ϕq(
∫ s

1
4
a(τ)dτ)ds

GN
∫ 3

4
1
4

(1−s)α−2ϕq(
∫ s

1
4
a(τ)dτ)ds = b,

which implies α(Tu) > b for all u ∈
K(γ, θ, α, b, b

G , d}. These ensure that the condi-
tion (S1) of Lemma 9 is satisfied.

Secondly, for all u ∈ K(γ, α, b, d) with
θ(Tu) > b

G ,

α(Tu) ≥ Gθ(Tu) > G
b

G
= b.

This shows that (S2) of Lemma 9 is satisfied.
Finally, we test that condition (S3) of Lemma 9

also holds. Clearly, ψ(0) = 0 < a, this shows 0 /∈
R(γ, ψ, a, d). If u ∈ R(γ, ψ, a, d) with ψ(u) = a.
From the condition (A3), we have

ψ(Tu) = max
0≤t≤1

|(Tu)(t)|

= max
0≤t≤1

∣∣∣∣ 1∫
0

G(t, s)ϕq

(
s∫
0

a(τ)f(τ, u(τ), u′(τ))dτ

)
ds

∣∣∣∣
≤
∫ 1

0
N(1− s)α−2 a(α−1)

Nϕq(
∫ 1
0
a(s)ds)

ϕq(
∫ 1

0
a(s)ds) = a.

So all the conditions of Lemma 9 are satisfied. There-
fore, boundary value problem (1),(2) has at least three
positive solutions u1, u2, u3 satisfing max

0≤t≤1
|u′i(t)| ≤

d, i = 1, 2, 3; b < min
1
4
≤t≤ 3

4

|u1(t)|; a < max
0≤t≤1

|u2(t)|,

min
1
4
≤t≤ 3

4

|u2(t)| < b, max
0≤t≤1

|u3(t)| < a. The proof is

complete. ⊓⊔

5 Example

Example: We consider the following four-point frac-
tional boundary value problem

(D
5
2

0+
u(t))′+f(t, u(t), u′(t)) = 0, 0 < t < 1, (20)

u′(0)− 1

2
u(

1

4
) = 0, u′′(0) = 0, u′(1)+

1

2
u(

1

2
) = 0,

(21)
where

f(t, x, y) = −t2 + t+
1

400
x+

1

1600
y2.

Then (20), (21) has at least one positive solution ω∗

such that

0 < ω∗ ≤ 4, 0 < |(ω∗)′| ≤ 4

and
lim
n→∞

ωn = lim
n→∞

Tnω0 = ω∗.

Proof: We can easily see that p = 2, α = 5
2 , β =

γ = η = 1
2 , ξ = 1

4 , a(s) = 1, by computating, Λ =
17
16 , N = 72

17
√
π
,M = 48

17
√
π
, choose m = 4, we claim

all the assumptions in Lemma 9 hold.
(A1) f(t, x1, y1) ≤ f(t, x2, y2) for any 0 ≤ t ≤

1, 0 ≤ x1 ≤ x2 ≤ 4, 0 ≤ |y1| ≤ |y2| ≤ 4;
(A2) max

0≤t≤1
f(t, 4, 4) = max

0≤t≤1
(−t2 + t + 1

400 ×

4 + 1
1600 × 16) = 1

4 + 1
200 < ϕp(

m
M ) = m

M = 17
√
π

12 ,
(A3) f(t, 0, 0) ̸≡ 0, for 0 ≤ t ≤ 1.

Therefore, by Lemma 9, the fractional boundary
value problem (20), (21) has at least one positive so-
lution ω∗. ⊓⊔

6 Conclusion
This paper is motivated from some recent papers treat-
ing the boundary value problems for four-point frac-
tional differential equations with p-Laplacian opera-
tor. In section 2, we first give some notations, recal-
l some concepts and preparation results. In section
3, we firstly use the monotone iterative technique to
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investigate the existence and monotone positive solu-
tions and establish a corresponding iterative scheme
for the mixed-order four-point boundary value prob-
lem with p-Laplacian (1), (2). In section 4, we use
Avery and Peterson fixed point theorem to study the
existence of three positive solutions for the fraction-
al boundary value problem (1), (2). In section 5, an
example is given to demonstrate the use of the main
results in section 3. To the best of our knowledge,
no work has been done to get existence and mono-
tone positive solutions and three positive solutions of
the four-point fractional boundary value problem for
2 < α ≤ 3. The aim of this paper is to fill the gap in
the relevant literatures. Such investigations will pro-
vide an important platform for gaining a deeper un-
derstanding of our environment.
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